Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Sci Immunol ; 5(54)2020 12 23.
Artículo en Inglés | MEDLINE | ID: covidwho-2161788

RESUMEN

Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Infecciones Asintomáticas , COVID-19/inmunología , Linfocitos T/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Estudios de Casos y Controles , Estudios Transversales , Humanos , SARS-CoV-2/inmunología
2.
J Pathol ; 257(2): 198-217, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1664431

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS-CoV-2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS-CoV-2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 status from the peaks of the pandemic in 2020 and four pre-COVID postmortem controls. SARS-CoV-2 anti-NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS-CoV-2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS-CoV-2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS-CoV-2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS-CoV-2 in contemporary cases as well as providing insights into potential long-term complications of COVID-19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Megacariocitos , Plexo Mientérico , Neuronas
3.
Nature ; 601(7891): 110-117, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1510600

RESUMEN

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Asunto(s)
Infecciones Asintomáticas , COVID-19/inmunología , COVID-19/virología , ARN Polimerasas Dirigidas por ADN/inmunología , Células T de Memoria/inmunología , SARS-CoV-2/inmunología , Seroconversión , Proliferación Celular , Estudios de Cohortes , ARN Polimerasas Dirigidas por ADN/metabolismo , Evolución Molecular , Femenino , Personal de Salud , Humanos , Masculino , Proteínas de la Membrana/inmunología , Células T de Memoria/citología , Complejos Multienzimáticos/inmunología , SARS-CoV-2/enzimología , SARS-CoV-2/crecimiento & desarrollo , Transcripción Genética/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA